Font size
  • A-
  • A
  • A+
Site color
  • R
  • A
  • A
  • A
eCampus
  • MAIN
  • eCAMPUS
    CLASS
  • FORUM
  • English ‎(en)‎ Español - Internacional ‎(es)‎
  • Acceder
Skip to main content

Tutorial RNASeq of comparative transcriptomics based on the species Sparus aurata

  1. Home
  2. Courses
  3. Tutorial RNASeq differential expression
  4. 2.2.1.5 - Differential Expression analysis
◄2. STEP-BY-STEP MODE TUTORIAL3. PIPELINE MODE TUTORIAL►
  • CONTENTS
  • 1. PRELIMINARY INFORMATION
    • 1.1 - Tutorial objective
    • 1.2 - Tutorial material and case study
    • 1.3 - Experiment design and support
    • 1.4 - Installing and activating RNASeq and the Server-Side
  • 2. STEP-BY-STEP MODE TUTORIAL
    • 2.1. - TOPHAT/HISAT2 & CUFFLINKS
      • 2.1.1 - Preparing your experiment
      • 2.1.2 - Quality analysis and preprocessing
      • 2.1.3 - Mapping
      • 2.1.4 - Transcriptome Assembly
      • 2.1.5 - Differential Expression analysis
      • 2.1.6 - GOSeq
    • 2.2. - MAPPING & COUNTING PROTOCOL
      • 2.2.1 - Genome mapping
        • 2.2.1.1 - Preparing your experiment
        • 2.2.1.2 - Quality analysis and preprocessing
        • 2.2.1.3. - Mapping
        • 2.2.1.4 - Postprocessing
        • 2.2.1.5 - Differential Expression analysis
        • 2.2.1.6 - GOseq
      • 2.2.2 - Transcriptome mapping
        • 2.2.2.1 - Preparing your experiment
        • 2.2.2.2 - Quality analysis and preprocessing
        • 2.2.2.3 - Mapping
        • 2.2.2.4 - Postprocesing
        • 2.2.2.5 - Differential Expression
  • 3. PIPELINE MODE TUTORIAL
    • 3.1 - TopHat/Hisat2 & Cufflinks protocol
    • 3.2 - Mapping & Counting protocol
  • 4. BIBLIOGRAPHY
  • CITE US
  • 2.2.1.5 - Differential Expression analysis


    The next step is to perform the differential expression analysis within the Mapping & Counting protocol. Again, the comparison will be performed between the BI group (Infected fish) versus the BC group (the control) using the 9 fastq files. To do this, the Step-by-Step mode provides you with two alternative tools for differential expression under the Mapping and Counting protocol. The first one is DESeq (Love et al., 2014) which estimates variance-mean dependences in sequencing read count data). The second one is EdgeR (Robinson et al., 2010) which uses an array of statistical methods that are based on negative binomial distributions including empirical Bayes estimation, exact tests, generalized linear models and quasi-likelihood tests. In this tutorial, we use EdgeR.

    To start, go to the Step-by-Step menu path, Mapping & Counting → Differential Expression Analysis → EdgeR and do as follows in Video 11.

    Video 11. Differential expression analysis using EdgeR.

    Expected results from differential expression analysis:

    When EdgeR is complete, you will receive the results of differential expression sample with the reads mapped against the reference genome. 

    The expected results of this step are available in the following link edgeR.

    Bear in mind that under the edgeR analysis significant results are those features supported by a FDR-adjusted p-values <0.05. 

    Remember you can check if the job was successfully completed by accessing the job tracking panel of RNASeq. 

    To know more about EdgeR, see https://bioconductor.org/packages/release/bioc/html/edgeR.html.

    ◄2.2.1.4 - Postprocessing3. PIPELINE MODE TUTORIAL►
    • Home
    • Calendar
    • Course sections
      • CONTENTS
      • 1. PRELIMINARY INFORMATION
      • 1.1 - Tutorial objective
      • 1.2 - Tutorial material and case study
      • 1.3 - Experiment design and support
      • 1.4 - Installing and activating RNASeq and the Server-Side
      • 2. STEP-BY-STEP MODE TUTORIAL
      • 2.1. - TOPHAT/HISAT2 & CUFFLINKS
      • 2.1.1 - Preparing your experiment
      • 2.1.2 - Quality analysis and preprocessing
      • 2.1.3 - Mapping
      • 2.1.4 - Transcriptome Assembly
      • 2.1.5 - Differential Expression analysis
      • 2.1.6 - GOSeq
      • 2.2. - MAPPING & COUNTING PROTOCOL
      • 2.2.1.1 - Prepare your experiment for the mapping & counting analysis
      • 2.2.1.2 - Quality analysis and preprocessing
      • 2.2.1.3 - Mapping
      • 2.2.1.4 - Postprocessing
      • 2.2.1.5 - Differential Expression analysis
      • 3. PIPELINE MODE TUTORIAL
      • 3.1 - TopHat/Hisat2 & Cufflinks protocol
      • 3.2 - Mapping & Counting protocol
      • 4. BIBLIOGRAPHY
      • Pipeline mode: Tophat & Cufflinks protocol results
      • Pipeline mode: Mapping & Counting protocol results
      • CITE US
      • CASE STUDY
      • 2.2.1 - Genome mapping
      • 2.2.1.6 - GOseq
      • 2.2.2 - Transcriptome mapping
      • 2.2.2.1 - Preparing your experiment
      • 2.2.2.2 - Quality analysis and preprocessing
      • 2.2.2.3 - Mapping
      • 2.2.2.4 - Postprocessing
      • 2.2.2.5 - Differential Expression analysis
    Accessibility settings
    About us
    Team
    Publications
    R&D
    Patents & trademarks
    Announcements
    Careers
    Journal Sequencing Partners

    Biotechvana


    Valencia Lab
    Parc Cientific Universitat de Valencia
    Carrer del Catedràtic Agustín Escardino, 9. 46980 Paterna (Valencia) Spain
    Madrid Lab
    Parque Científico de Madrid
    Campus de Cantoblanco
    Calle Faraday 7, 28049 Madrid Spain
    Contact us
    Phone: +34 960 06 74 93
    Email: biotechvana@biotechvana.com

    Esta plataforma forma parte de: IVACE PROJECT IMDIGB/2020/56


    Projectes de Digitalizació de PIME (DIGITALIZA-CV TELETREBALL)2020
    IVACE PROJECT IMDIGB/2020/56

    Biotechvana © 2021
    eCampus Privacy policy    eCampus Terms of use